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Abstract

Though modern Visual Simultaneous Localisation and
Mapping (vSLAM) systems are capable of localising ro-
bustly and efficiently even in the case of a monocular cam-
era, the maps produced are typically sparse point–clouds
that are difficult to interpret and of little use for higher–level
reasoning tasks such as scene understanding or human–
machine interaction. In this paper we begin to address this
deficiency, presenting progress on expanding the compe-
tency of visual SLAM systems to build richer maps. Specifi-
cally, we concentrate on modelling indoor scenes using se-
mantically meaningful surfaces and accompanying labels,
such as “floor”, “wall”, and “ceiling” — an important step
towards a representation that can support higher-level rea-
soning and planning.

We leverage the Manhattan world assumption and show
how to extract vanishing directions jointly across a video
stream. We then propose a guided line detector that utilises
known vanishing points to extract extremely subtle axis–
aligned edges. We utilise recent advances in single view
structure recovery to building geometric scene models and
demonstrate our system operating on–line.

1. Introduction

The simultaneous localisation and mapping problem has
received considerable attention over past decades, which
is unsurprising given its centrality in fields from mobile
robotics to augmented reality. Considerable progress has
been made over this period and modern SLAM systems per-
form efficiently and robustly even in the case of a monocular
video stream [7].

Many high–level reasoning and planning problems can
benefit from an accurate underlying SLAM system, but
SLAM point clouds alone provide a poor basis upon which
to reason about scene semantics as they represent just a frac-

Figure 1. The floor plan and two camera views of the Manhat-
tan building model reconstructed automatically and on–line for
the “lab” sequence. The point cloud is so sparse that even a hu-
man would struggle to reconstruct this floor plan using point data
alone. Our system uses rich photometric cues together with cam-
era poses recovered from SLAM to reason about Manhattan world
geometry.

tion of the information present in the original images. Pho-
tometric cues for edges, surfaces, occlusion boundaries, and
texture information, among others, are lost entirely.

Consider the top–down view of a SLAM point cloud de-
picted in Figure 1. The points are sparse and non–uniformly
distributed; even a human would have difficulty identify-
ing the location of walls using the point cloud alone. The
SLAM system used here has located map points at salient
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corners in the images, which are optimal for camera locali-
sation but unhelpful for inferring high–level scene structure.

An important step towards higher–level reasoning tasks
is to represent the structure of the scene at a semantic
level, using meaningful concepts such as “floor” and “wall”.
These entities assist in reasoning as they correlate with, for
example, the locations in which objects might appear or the
set of feasible actions in a given location.

The present work investigates the extraction of such a se-
mantic scene model from video sequences, utilising an un-
derlying SLAM system together with rich photometric cues.
We focus on indoor scenes as they exhibit a rich set of reg-
ularities that assist in model building. One such regularity
is the prevalence of three mutually orthogonal orientations
around which man–made environments are often built up.
The use of this observation to restrict the space of possible
scene interpretations has come to be known in the literature
as the Manhattan world assumption. Typically, the orienta-
tion of the camera with respect to these dominant directions
is a priori unknown and must be extracted explicitly, for ex-
ample by identifying vanishing points. We propose a new
method that leverages the camera poses provided by SLAM
to estimate vanishing directions jointly across a video se-
quence, allowing frames with salient edge information to
inform the system about vanishing directions in frames with
poor or non–existent edge information.

We then return to the images to re–identify line segments
using the known vanishing points to inform our search. We
propose a novel line detector that takes vanishing point lo-
cations into account to identify important structural edges
that are aligned with a dominant direction but which may
exhibit weak gradients, whilst ignoring stronger gradients
generated by surface texture or occlusion boundaries.

The final component of our system joins the line seg-
ments into Manhattan building structures, inspired by re-
cent work in single view reconstruction [9]. We enumerate
possible building structures that the observed line segments
could generate under the Manhattan world assumption and
evaluate each for consistency with surface orientations esti-
mated from photometric cues. The key contribution of this
section is the extension to multiple views of the hypothe-
sis testing framework, which allows our system to disam-
biguate scenarios that the single view approach would fail
on.

The remainder of this paper is organised as follows. In
the next section we overview prior work in this field. Fol-
lowing this we describe the three primary components of
our system in order: the joint vanishing point estimator,
the Manhattan line search algorithm, and the reconstruction
system, with results given in each section. Finally we dis-
cuss the results and present closing remarks.

2. Background
In recent years the need for semantics to be connected

with SLAM maps has been recognised by several re-
searchers. Stachniss et al. [15] have taken an image–centric
approach wherein 3D features are projected into frames
and used together with photometric cues to classify en-
vironments into semantic categories such as “corridor” or
“room”. Posner et al. [11] take this a step further by seg-
menting incoming frames into semantic categories based
jointly on 3D and photometric cues. Xiao and Quan [18]
have approached this problem by solving a multiple label
MRF over superpixels from two or more views. Brostow
et al. [1] demonstrate that several intuitive 3D features are
sufficient for semantic video segmentation.

Buschka and Saffiotti [2] opt instead to reason directly
in the map. They build an occupancy grid and identify
room boundaries use morphological filters. More recently,
Golovinskiy et al. [4] learn to segment and identify objects
in city–wide reconstructions using machine learning tech-
niques. These approaches discard the original images after
building a map, which we believe throws away many useful
cues not captured in the map.

Furukawa et al. [3] have shown how to reconstruct Man-
hattan environments using graph cuts. Their reconstructions
are of high quality but their quoted computation times (of
between one minute and one hour forty minutes) make their
approach unsuitable to on–line computation. Their system
uses multiple–view stereo to first reconstruct a dense point
cloud, whereas we are interested in working with a sparse
point cloud and leveraging photometric cues for on–line
performance.

Several authors have recently demonstrated impressive
single view reconstruction systems. Hoiem et al. [6] pose
the problem as a multi–class segmentation problem, with
labels corresponding to 3D geometry, while Saxena et al.
[13] obtain reconstructions by estimating surface normals
of image patchlets. Gould et al. [5] reason simultaneously
about geometry and object labels.

Lee et al. [9] take a geometric approach in which de-
tected line segments are connected to form 3D building hy-
potheses. The authors show that an exhaustive search over
building hypotheses is feasible since Manhattan world mod-
els are highly constrained. This work forms the basis for
Section 5, which extends this approach to multiple views.

Many researchers have proposed methods for complet-
ing partial lines or identifying subtle, yet semantically im-
portant, line segments that humans see easily. For example,
Sarti et al. [12] iteratively fill missing boundaries starting
from a reference point and Shufelt [14] models line detec-
tion errors explicitly. This body of literature deals with the
single image scenario, whereas the emphasis of our work
is on leveraging metric SLAM information to improve the
accuracy and speed of line detection.



3. Extracting a canonical coordinate frame
Input to our system is a set of key–frames sampled from

the video sequence, with SLAM poses Pi for each frame.
The sub–sampling of key–frames from the video stream is
determined by the SLAM implementation [7]; for a typical
exploration sequence, key–frames are added at intervals of
around 1–3 seconds. Pi consists of a rotation Ri and trans-
lation ti. These are measured with respect to some coordi-
nate frame determined during initialisation, which we will
refer to as the “SLAM coordinate frame”.

In order to make use of the Manhattan world assump-
tion we must first discover the orientation of the Manhattan
world with respect to the camera. Equivalent to the Man-
hattan world assumption is the statement that there exists a
“canonical” coordinate frame in which world surfaces are
axis–aligned. The problem is therefore to discover the rota-
tion Rw between the canonical coordinate frame and the
SLAM coordinate frame. Rw is constant for all frames
since the SLAM system has already determined the relative
transformations between successive frames.

In the past researchers have discoveredRw for single im-
ages by identifying vanishing points [8, 14]. This approach
fails for frames that do not contain edges in at least two
of the Manhattan directions, or that contain predominantly
non–axis–aligned edges. Both scenarios are common in
video sequences of indoor environments since the camera
often views only a small portion of the scene. Since Rw
is fixed for all frames it makes sense to leverage all avail-
able data during estimation rather than to estimate vanishing
points separately for each frame.

In the structure–from–motion setting it has been pro-
posed to recover Rw by clustering surface normals esti-
mated from local neighbourhoods in the point cloud [3].
The surface normal approach requires a dense scene re-
construction, whereas the point cloud provided by on–line
SLAM is too sparse to obtain dense orientation estimates.
Though we could have implemented dense reconstruction
on top of SLAM, we show in the remainder of this section
that Rw can be estimated very robustly from line detections
and camera poses alone — an approach that is also far less
computationally intensive.

We begin by running the Canny edge detector on each
key–frame, followed by an edge linking algorithm [8] to
identify a set of straight line segmentsLj = {x : lTj x = 0}.

The projections of the three vanishing points into the ith

frame are related to Rw by

v1 = RiRwe1 (1)
v2 = RiRwe2 (2)
v3 = RiRwe3 (3)

where e1, e2, and e3 are unit vectors in the x, y, and z
directions respectively. We can now write down an error

function to be minimised in terms of Rw:

f(Rw) =
∑
i,j,k

rjk

(
lj
T RiRwek√
ljx

2 + ljy
2

)2

, (4)

where rjk is the responsibility of the kth vanishing point for
the jth line segment. The squared term in (4) is the alge-
braic deviation1of the jth line segment from the kth vanish-
ing point in frame i, and the full error (4) is the sum over all
such deviations, weighted by the respective responsibilities.

While other authors search for vanishing points by clus-
tering on the Gaussian sphere, enforcing orthogonality con-
straints afterwards, we prefer to optimise in terms of Rw
directly, which embeds the orthogonality constraint into the
estimation process itself.

We now describe an EM algorithm to optimise Rw with
respect to (4). During the E step we compute the responsi-
bilities rjk of each vanishing point vk for each line segment
lj . We assume a Gaussian likelihood

p(lj | vk) = G

(
lj
Tvk√

ljx
2 + ljy

2
;σ
)

(5)

as well as a fixed prior on observing a spurious line segment

p(Sj) = ρ . (6)

Noting that we must have

p(Sj) +
3∑
i=1

rji = 1 (7)

and assuming that line segments are equally likely to be as-
sociated with any of the three vanishing points, we have

rjk =
p(lj | vk)

α+
∑
i p(lj | vi)

(8)

where we have substituted

α =
3ρ

1− ρ
p(lj | Sj) . (9)

The M step consists of optimising Rw with respect to
the error function (4). There is no closed form solution for
the optimalRw so we instead perform gradient descent. We
represent Rw in the Lie algebra as a member of the special
orthogonal group SO(3), so

Rw = exp(
∑

miGi) (10)

1We use the algebraic deviation rather than the re–projection error [10]
for simplicity and because we have found that the very large number of
line segments we obtain from the entire video sequence renders a more
complicated error metric unnecessary.



where the Gi are the generator matrices for SO(3) and the
mi provide a minimal representation for the 3D rotation ma-
trix group. The advantage of using this representation is that
at each step we are guaranteed that Rw remains a pure rota-
tion, whereas under other representations, such as optimis-
ing the elements of the 3× 3 rotation matrix directly, this is
not the case. Differentiating (4) with respect to m yields

∇f =
∑
i,j,k

2rjk2lj
TRiRwek lj

TRi∇Rwek

ljx
2 + ljy

2 (11)

∇Rw = [G1e1, G2e2, G3e3] . (12)

Our update rule is then

mt+1 = mt − f(mt)
‖∇f(mt)‖2

∇f(mt) . (13)

In summary, to obtain Rw we iterate between assigning
responsibilities (the E step) and optimising Rw given those
responsibilities (the M step). Each M step consists of a gra-
dient descent in the Lie algebra. In practice we found that
our system converged in around 25 iterations of the EM al-
gorithm, and that approximately 10 steps were required for
each gradient descent. Since the gradient descent algorithm
converged quickly and robustly we found no need to use
higher–order approaches such as the Gauss–Newton algo-
rithm.

Figure 2 shows the vanishing points identified in one of
our sequences. Since each frame is informed by the entire
sequence we are able to identify a globally consistent co-
ordinate frame where single–image vanishing point detec-
tion fails. Figure 3 shows a side–by–side comparison with
the single–image vanishing point detector of [8]. Recently
proposed improvements to the single–image approach [16]
may improve slightly on these, but we found that in cases
where the single–image approach fails there is often sim-
ply not enough information available in individual frames
to identify the appropriate coordinate frame, so any single–
image approach will necessarily fail.

3.1. Identifying the vertical direction

Of the three dominant directions defined byRw, two cor-
respond to horizontal directions and the third to the ver-
tical direction. The latter is semantically distinct since it
defines the orientation of the ground and ceiling planes, as
well as the direction in which gravity operates. It is easy
to identify the vertical axis since humans necessarily move
over the ground plane when capturing video sequences, and
have limited scope for moving the camera in the up–down
direction. We therefore set the vertical axis to that over
which camera positions range the least. Having identified
Rw there are only three possible choices, and we found
this heuristic to work correctly in all of our evaluation se-
quences.

Figure 2. Four frames from the “bathroom” sequence and the de-
tected vanishing points. The vanishing points are correctly iden-
tified despite the strong distractor gradients generated by the floor
tiles, which is possible only by integrating information from mul-
tiple views into the estimation process. Vertical lines are green,
horizontal lines are blue (along the room’s longer dimension) and
red (along the room’s shorter axis).

Single–image estimation[8] Our method

Figure 3. Comparison between vanishing points estimated for sin-
gle views (left column) and joint estimates from 20 frames in a
video sequence (right column). Our method is able to identify van-
ishing directions correctly in these difficult cases, whereas the sin-
gle view estimator is confused by non–Manhattan line segments.



3.2. Relaxing the Manhattan world assumption

The strong Manhattan assumption states that any pair of
surfaces of interest are either parallel or orthogonal to one
another. One common deviation from this is scenes with
walls that are orthogonal to the ground and ceiling but not
to one another. We define the weak Manhattan assumption
as “the environment consists of a horizontal ground plane
and corresponding ceiling plane, and a set of vertical wall
segments extending continuously between them.” Weakly
Manhattan environments contain much of the regularity of
strongly Manhattan environments. We deal with the weak
Manhattan assumption as follows. First, we run the EM
algorithm described above to obtain Rw. Next, for each
line lj marked as spurious by the EM algorithm we find its
intersection with the horizon,

uj = R−T
w R−T

i lj × e3 , (14)

which would be its vanishing point if it were horizontal in
the world. Vertical surfaces of a given orientation will gen-
erate identical uj (modulo measurement error), so we may
identify additional vertical orientations by clustering the in-
tersections {uj}. We adopt a voting algorithm in which we
parametrise uj in terms of the angle θj about the z axis

θj = atan(e2
Tuj , e1

Tuj) . (15)

We accumulate the θj into histogram bins and identify any
local maxima θ∗i above a threshold k. Each θ∗i represents
a cluster of line segments corresponding to an additional
vertical orientation. Finally, we re–estimate the vanishing
point for each cluster by minimising the likelihood (5) via
least–squares.

4. Manhattan line search
Many of the structurally important edges in indoor

scenes generate weak intensity gradients in comparison to
those generated by surface texture or occlusion boundaries.
For example, if two adjoining walls are painted the same
colour then the intensity gradient at their intersections will
be generated only from subtle Lambertian lighting effects.
Hence the most important edges (for reconstruction pur-
poses) are often the most difficult to identify. Three ex-
amples of this phenomenon are shown in Figure 6.

We have found that the Canny edge detector, which is
the near–universal approach to edge detection within the
vision literature, misses many structurally important edges
unless the thresholds are lowered to such a point that any
textured surface generates many thousands of spurious line
segments. Conversely, when the Canny thresholds are set
to large enough values in order that spurious detections are
kept to a manageable level then the true positive line seg-
ments are insufficient for the the reconstruction process de-

scribed in the following section (although they are suffi-
ciently numerous to identify the canonical coordinate frame
since the space of rotations has fewer degrees of freedom
than the space of building structures).

To overcome this we return to the images after determin-
ing the canonical coordinate frame and perform a second
search for Manhattan line segments.2 with the known van-
ishing points informing the search. For each pixel x we
begin by estimating its vanishing point association. The
orthogonality constraint guarantees that no two vanishing
points will be very close to one another, so we obtain a reli-
able estimate using only the local image gradient g:

assoc(x) = argmini
(x− vi)Tg

‖x− vi‖
, (16)

where i ranges over the three possible vanishing points.
Each vanishing point is associated with a one–parameter

family of lines extending from it (three cases are shown in
Figure 4) and Manhattan line segments correspond to clus-
ters of pixels lying along a single vanishing line. We pro-
pose the following voting strategy to identify Manhattan
line segments. We parametrise each pixel x by the angle
θ(i,x) that its vanishing line m = x× vi makes about the
associated vanishing point vi,

θ(i,x) = atan(xTvj ,x
Tvk) (17)

where all vectors are in homogeneous coordinates. This
representation is free of singularities and sampling uni-
formly in θ space produces a uniform distribution of lines
in the image.

Figure 4. Lines meeting at a vanishing point.

Next we build a histogram over θ for each of the three
vanishing points. Each vote is weighted by the strength of
the local image gradient and the agreement between the gra-
dient orientation and the direction to the associated vanish-
ing point. Formally, the weight with which a pixel x votes
for the vanishing line m = x× vi is

wx,i = ‖g‖α
(

(x + g)Tm

‖x + g‖2
√
mx

2 +my
2

)β
, (18)

where g is the image gradient at x and α and β are param-
eters that determine the relative importance of the gradient
orientation and magnitude.

2Manhattan line segments are those generated by surfaces oriented in
one of the dominant directions.



The bin width for the histograms is set to the minimum
size such that no bin spans more than two pixels anywhere
in the image. Histogram peaks are identified by apply-
ing non–maximum suppression followed by thresholding.
The final line segments are identified by walking along the
vanishing lines corresponding to peaks in the histogram
and linking edge pixels using hysteresis. A line segment
is started each time a gradient magnitude above the high
threshold k0 is detected, and is ended when the gradient
magnitude drops below the low threshold k1. This algo-
rithm requires just one pass over the image to populate all
three histograms. Identifying peaks in the histogram and
walking along the corresponding lines is then computation-
ally trivial.

Compared to the cascaded Hough transform of Tuyte-
laars et al. [17], our approach estimates vanishing points
from multiple views simultaneously and leverages orthogo-
nality constraints for robustness. Our line search is linear in
the size of the image, whereas each iteration of the cascaded
Hough transform has complexity cubic in the image size.

Figure 5 shows four example frames and the lines corre-
sponding to the histogram peaks. The detector fires at subtle
axis–aligned gradients while ignoring strong but non–axis–
aligned distractors. Figure 6 shows a side–by–side compar-
ison with the line detector of [8], which employs the stan-
dard Canny edge detector followed by an edge linking al-
gorithm. In each example our detector is able to identify
important structural edges that the Canny detector does not
respond to. We found that lowering the Canny thresholds
sufficiently to detect these edges generated many thousands
of spurious line segments on the textured carpet and other
areas.

Figure 5. Four frames from the “lab” sequence with peaks in the
the histograms over θ highlighted, each of which corresponds to a
Manhattan line in the image. The rays capture the important ge-
ometric structure extremely accurately, with almost no false posi-
tives.

Figure 6. Comparison between the Canny/edge linking detector
(left column) and our guided line search (right column). Our ap-
proach is able to recover several subtle yet structurally important
line segments that Canny misses.

5. Recovering building structures
In the previous sections we used the pose estimates pro-

vided by the SLAM system to find stable structural lines in
an axis–aligned frame. The final component of our system
shows how this information can be combined to build a se-
mantically meaningful reconstruction of the environment.
In [9], the authors proposed a branch-and-bound algorithm
that exploits the Manhattan assumption to build a recon-
struction for a single monocular image. In this section we
extend this approach to evaluate building hypotheses using
multiple views in order to leverage the metric camera tra-
jectories provided by the SLAM system.

The assumption of a Manhattan world containing infi-
nite floor and ceiling planes constrains possible scene inter-
pretations considerably. The entire set of feasible building
structures can be efficiently enumerated using the following
branch–and–bound algorithm. First, each valid pair of hor-
izontal lines initialises a building hypothesis with a single
wall and no corners. Next, corners are added recursively by
intersecting detected line segments with existing building
hypotheses, up to a maximum depth D. Not all hypotheses
are physically realisable but those that are not can be easily
identified using simple heuristics [9].

Each building hypothesis B defines a unique 3D model
up to an unknown scale factor s∗. To determine s∗ we lever-



age the observation that some SLAM landmarks will fall on
the surfaces we are trying to reconstruct. We therefore pro-
pose the following voting scheme. For each SLAM land-
mark visible in the current frame we identify the surface it
falls upon within B. Next we compute the scaling ŝ such
that the reconstructed surface contains that 3D point. Each
SLAM landmark then votes for the scale it induces on B.
We accumulate votes into a histogram and set s∗ to the scale
that received the greatest number of votes.3

Knowledge of s∗ permits a full 3D reconstruction and
hence allows transfer of building structure between frames.
We test each building hypothesis according to its consis-
tency with surface orientation estimates in the current frame
and the K preceding frames. The orientation estimates are
computed separately for each frame using the line sweep
approach of [9]. The score for a building hypothesis B is
computed as the total number of pixels in all K + 1 frames
for which the orientation predicted by B agrees with the
orientation estimate. The hypothesis with greatest score is
output as the final model.

6. Results

We tested our approach on several videos of indoor en-
vironments, estimating a building structure for each key–
frame. To allow the SLAM system to continue real–time
operation the estimation was performed in a parallel thread.
Figure 8 shows processing times per key–frame. Process-
ing time varies from 0.045 to 3.4 seconds as a result of the
varying number of line detections, but note that processing
time does not increase systematically as the map expands.

Figure 7 shows the model reconstructed using our ap-
proach for the “lab” sequence. The second row shows the
initial orientation estimates obtained using the line sweep
algorithm. These estimates are noisy, inconsistent, and in
several instances major surfaces are missed entirely. How-
ever, by leveraging metric SLAM information and reason-
ing in multiple views simultaneously our approach is able
to generate the correct model in all frames, as shown in the
third row of Figure 7. Notice that this is despite the fact
that only one frame views both the floor and ceiling simul-
taneously — which is a prerequisite for the single–image
approach of Lee et al.

3An alternate approach would be to directly hypothesise building struc-
tures in 3D, avoiding the need to recover s∗. However, this would entail
first reconstructing each observed line segment in 3D, which is unattractive
because of the need to identify correspondences between lines in consecu-
tive frames and would render our system sensitive to a single mislocalisa-
tion. Our approach replaces the difficult line reconstruction problem with
the more constrained problem of identifying s∗. Lee et al. ignore s∗ since
they build reconstructions for single images only.
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Figure 8. Processing time and number of line detections for each
key frame. Processing time varies with the number of line detec-
tions but does not increase as the map gets larger.

7. Conclusion
We have shown that semantically meaningful models of

indoor scenes can be generated on–line. By combining pose
information generated by an underlying SLAM system to-
gether with photometric cues not present in the point cloud,
and incorporating the Manhattan world assumption, we can
reason across multiple views accurately and efficiently to
infer scene structure even when the SLAM point cloud is
very sparse. This work represents an important step towards
using SLAM in higher-level reasoning tasks for which point
clouds alone are unsuited. In particular, knowledge about
scene geometry can be beneficial for object detection, and
by locating geometric primitives in the canonical coordinate
frame we could automatically learn about common config-
urations such as doors and windows. More generally, we
hope to explore the idea of contextual priming for on–line
applications such as augmented reality and robotic naviga-
tion.
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